Computing Consensus Translation for Multiple Machine Translation Systems Using Enhanced Hypothesis Alignment

نویسندگان

  • Evgeny Matusov
  • Nicola Ueffing
  • Hermann Ney
چکیده

This paper describes a novel method for computing a consensus translation from the outputs of multiple machine translation (MT) systems. The outputs are combined and a possibly new translation hypothesis can be generated. Similarly to the well-established ROVER approach of (Fiscus, 1997) for combining speech recognition hypotheses, the consensus translation is computed by voting on a confusion network. To create the confusion network, we produce pairwise word alignments of the original machine translation hypotheses with an enhanced statistical alignment algorithm that explicitly models word reordering. The context of a whole document of translations rather than a single sentence is taken into account to produce the alignment. The proposed alignment and voting approach was evaluated on several machine translation tasks, including a large vocabulary task. The method was also tested in the framework of multi-source and speech translation. On all tasks and conditions, we achieved significant improvements in translation quality, increasing e. g. the BLEU score by as much as 15% relative.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computing Consensus Translation from Multiple Machine Translation Systems Using Enhanced Hypotheses Alignment

This paper describes a novel method for computing a consensus translation from the outputs of multiple machine translation (MT) systems. The outputs are combined and a possibly new translation hypothesis can be generated. Similarly to the well-established ROVER approach of (Fiscus, 1997) for combining speech recognition hypotheses, the consensus translation is computed by voting on a confusion ...

متن کامل

Computing Consensus Translation from Multiple Machine Translation Systems

In this paper, we address the problem of computing a consensus translation given the outputs from a set of Machine Translation (MT) systems. The translations from the MT systems are aligned with a multiple string alignment algorithm and the consensus translation is then computed. We describe the multiple string alignment algorithm and the consensus MT hypothesis computation. We report on the su...

متن کامل

Exploring Consensus in Machine Translation for Quality Estimation

This paper presents the use of consensus among Machine Translation (MT) systems for the WMT14 Quality Estimation shared task. Consensus is explored here by comparing the MT system output against several alternative machine translations using standard evaluation metrics. Figures extracted from such metrics are used as features to complement baseline prediction models. The hypothesis is that know...

متن کامل

Improving Word Alignment with Bridge Languages

We describe an approach to improve Statistical Machine Translation (SMT) performance using multi-lingual, parallel, sentence-aligned corpora in several bridge languages. Our approach consists of a simple method for utilizing a bridge language to create a word alignment system and a procedure for combining word alignment systems from multiple bridge languages. The final translation is obtained b...

متن کامل

Indirect-HMM-based Hypothesis Alignment for Combining Outputs from Machine Translation Systems

This paper presents a new hypothesis alignment method for combining outputs of multiple machine translation (MT) systems. An indirect hidden Markov model (IHMM) is proposed to address the synonym matching and word ordering issues in hypothesis alignment. Unlike traditional HMMs whose parameters are trained via maximum likelihood estimation (MLE), the parameters of the IHMM are estimated indirec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006